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a b s t r a c t

First-principles calculations of the crystal structure and the elastic properties of �-Ta4AlC3 have been car-
ried out with the plane-wave pseudopotential density functional theory method. The calculated values
are in very good agreement with experimental data as well as with some of the existing model calcu-
lations. The pressure dependence of the elastic constants cij, the aggregate elastic moduli (B, G, E), the
Poisson’s ratio, and the elastic anisotropy has been investigated. Using the quasi-harmonic Debye model
considering the phonon effects, the temperature and pressure dependencies of isothermal bulk modulus,
and the thermal expansions, and Grüneisen parameters, as well as Debye temperatures are investigated
systematically in the ranges of 0–60 GPa and 0–1500 K as well as compared to available data.
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. Introduction

The Mn+1AXn (MAX) compounds, have attracted great atten-
ion these last few years due to these compounds exhibit unique
roperties [1–5], such as low density, high elastic moduli, good
igh-temperature stability, high thermal and electrical conduc-
ivities, excellent thermal shock resistance, damage tolerance
nd micro-scale ductility at room temperature. Ta4AlC3, a new
ember of the family of multifunctional nanolaminated ceramics

nown as the MAX phases has drawn a lot of attention recently
6–14]. Ta4AlC3 has recently been synthesized either in the form
f polycrystals [6–10] or single crystals [11]. The bulk modu-
us of Ta4AlC3 has been determined by Palmquist et al. to be
61 GPa, which is so far the highest for any MAX phase [6].
a4AlC3 was found to crystallize in a hexagonal structure with
he space group P63/mmc (no. 194) [6–11]. Lin et al. [8,9] pre-
ented high-resolution transmission electron microscopy (HRTEM)

mages showing that their hot-pressed Ta4AlC3 samples exhib-
ted a different stacking sequence from the structure of Ti4AlN3.

Rietveld refinement confirmed their structure and explained
he large differences between experimental and calculated data

∗ Corresponding author.
E-mail address: pengfengscu@gmail.com (F. Peng).

925-8388/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jallcom.2009.09.035
observed by Manoun et al. [7]. Then, Eklund et al. [10] showed
that Ta4AlC3 exhibited the original Ti4AlN3 structure. Recently,
Wang et al. [12] and Du et al. [13] and Deng et al. [15,16]
studied the polymorphism of Ta4AlC3 from first-principles calcula-
tions.

The study of material properties under high pressure and
temperature is important in a variety of situations in physics,
astrophysics and related sciences. Among these properties, the
elastic constants, phonon frequencies and equations of state (EOS)
are fundamental for solids. An accurate description of the elas-
tic properties for solids are extremely important, because these
play significant roles in determining some materials properties,
such as interatomic forces, phase transition, transport coefficients,
and electron–phonon interactions. Elastic properties are also linked
thermodynamically with specific heat, thermal expansion, Debye
temperature, and Grüneisen parameter. In particular, they provide
information on the stability and stiffness and lattice dynamical con-
siderations of materials [17].

Therefore, in this work we predict the structural stability, and
the systematics of elastic and thermodynamic properties of �-

Ta4AlC3 under high pressure. We find that �-Ta4AlC3 has low
density, high elastic moduli, high-temperature stability, high ther-
mal and micro-scale ductility at room temperature. This paper is
organized as follows: the computational methods are described
firstly. Elastic and thermodynamic properties of �-Ta4AlC3 under

http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:pengfengscu@gmail.com
dx.doi.org/10.1016/j.jallcom.2009.09.035
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Table 1
The lattice constants (Å), bulk and shear moduli (GPa), Poisson ratio, and the elastic constants (GPa) for �-Ta4AlC3.

a c c/a B G E � c11 c12 c13 c33 c44

Present 3.189 24.552 7.699 260 141 359 0.269 493 161 155 418 192
Exp. [11] 3.113 24.112
Ref. [13] 3.1344 24.2675 7.7423 266.3 0.27
Exp. [10] 3.10884 24.0776 7.7449
Exp. [5] 132 324
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where Cijkl denotes the second-order derivatives with respect to the
infinitesimal strain (Eulerian), and ı is the finite strain variable. For
the �-Ta4AlC3, there are five independent elastic constants, i.e. c11,
Ref. [12]
Ref. [14]-GGA
Ref. [14]-LDA
Ref. [15] 3.138 24.163 7.70 247

igh pressure are presented in detail later. Finally, a brief summary
nd conclusions are given.

. Computational details and theory

.1. Computational details

In this work, all calculations were performed using the
lane-wave pseudopotential density functional theory (DFT) [18].
anderbilt-type non-local ultrasoft pseudopotentials (USPP) [19]
re employed to describe the electron–ion interactions. The effects
f exchange–correlation interaction are treated within the gener-
lized gradient approximation (GGA) of Wu–Cohen (WC) [20]. In
he structure calculation, a plane wave basis set with energy cut-
ff 650.00 eV is used. Pseudo-atomic calculations are performed
or C 2s22p2 and Al 3s23p1 and Ta 5d36s2. For the Brillouin-zone
ampling, the 11 × 11 × 3 Monkhorst–Pack mesh is adopted. The
elf-consistent convergence of the total energy is 10−6 eV/atom and
he maximum force on the atom is 10−4 eV/Å. All the total energy
lectronic structure calculations are implemented by the CASTEP
ode [21].

.2. Structural properties

The energy–volume (E–V) curve can be obtained by fitting the
alculated E–V data to the Birch–Murnaghan EOS [22]

E(V) = E − E0 = B0V0

[
Vn

B′
0

+ 1
1 − B′

0
+ V

1−B′
0

n

B′
0(B′

0 − 1)

]
. (1)

here E0 is the equilibrium energy. The pressure P versus the nor-
alized volume Vn is obtained through the following relationship

= − dE

dV
= B0

B′
0

[V
−B′

0
n − 1]. (2)

here B′
0 = dB0/dP and B0 are the pressure derivative of the bulk

odulus and zero pressure bulk modulus, respectively.
To calculate the total energy E and the corresponding volume V,

series of different lattice parameters a and c are taken to obtain the
otal energy over a wide volume range of 0.8–1.2V0, where V0 is the
ero pressure equilibrium primitive cell volume. The equilibrium

attice parameters a and c (Table 1) can be obtained by two-
imensional scanning the total energy. The calculated equilibrium

attice parameters and bulk modulus B are in good agreement with
xperimental data [10,11] and other theoretical results [13,15,16],
espectively. The ratios a/a0, c/c0, and V/V0 (where a0, c0 are the zero
ressure and temperature equilibrium lattice constants) as func-
ions of the applied pressure together with the experimental result
re plotted in Fig. 1. Our obtained data are consistent well with the
xperiment [7].
496 154 181 417 200
495 164 157 421 196
437 158 197 416 165
454 157 156 376 201

2.3. Elasticity

To calculate the elastic constants under hydrostatic pressures,
the non-volume conserving strains are adopted because this
method is consistent with our calculated elastic constants using
the stress–strain coefficients, which are appropriate for the calcu-
lation of the elastic wave velocities. The elastic constants cijkl, with
respect to the finite strain variables, are defined as [23–25]

cijkl =
(

∂�ij(x)
∂ekl

)
X

. (3)

where �ij and ekl are the applied stress and Eulerian strain tensors,
and X and x are the coordinates before and after the deformation.
For the isotropic stress, we have [24–26]

cijkl = Cijkl + P

2
(2ıijıkl − ıilıjk − ıikıjl),

C =
(

1 ∂2E(x)
)

. (4)
Fig. 1. The variations about the ratios of c/c0, a/a0, V/V0 with the applied pressure
for �-Ta4AlC3.



1 and Co

c
±
s

s
a
i
e
m
m
(

B

B

G

G

w
t
w
V
b

G

B

(

E

�

a

�

w
t
M
v

v

w
r

v

v

42 F. Peng et al. / Journal of Alloys

12, c13, c33, and c44. In our calculations, for all strains, ı = ±0.0018,
0.003, ±0.0006 are taken to calculate the total energies E for the

trained crystal structure, respectively.
Our calculated elastic constants cij of the �-Ta4AlC3 at zero pres-

ure and zero temperature are listed in Table 1. Our obtained data
re consistent well with other calculations [12,14,15]. From the
ndependent elastic constants above, the theoretical polycrystalline
lastic modulus can be obtained. There are two approximation
ethods to calculate the polycrystalline modulus, namely the Voigt
ethod [27] and the Reuss method [28]. The Voigt (GV) and Reuss

GR) bulk moduli are given by

V = 1
9

(2(c11 + c12) + c33 + 4c13). (5)

R = (c11 + c12)c33 − 2c2
13

c11 + c12 + 2c33 − 4c13
. (6)

The shear moduli can be estimated by

V = 1
30

(c11 + c12 + 2c33 − 4c13 + 12c44 + 12c66). (7)

R = 5
4

((c11 + c12)c33 − 2c2
13)

2
c44c66

3BV c44c66 + ((c11 + c12)c33 − 2c2
13)

2
(c44 + c66)

. (8)

here c66 = (1/2)(c11 − c12). The arithmetic average of the Voigt and
he Reuss bounds is called the Voigt–Reuss–Hill (VRH) average,
hich is often used to calculate elastic moduli of polycrystals. The
RH averages for shear modulus (G) and bulk modulus (B) are given
y

= 1
2

(GR + GV ). (9)

= 1
2

(BR + BV ). (10)

The polycrystalline Young’s modulus (E), and the Poisson’s ratio
�) are then calculated by

= 9BG

3B + G
. (11)

= 3B − 2G

2(3B + G)
. (12)

The elastic Debye temperature (�D) can be estimated from the
verage sound velocity vm, by the following equation [29]

D = h

k

[
3n

4�

(
NA�

M

)]1/3
vm. (13)

here h is the Planck’s constants, k the Boltzmann’s constant, NA
he Avogadro’s number, n the number of atoms in the molecule,

the molecular weight, and � is the density. The average wave
elocity vm is approximately calculated from

m =
[

1
3

(
2

v3
s

+ 1

v3
p

)]−1/3

. (14)

here vp and vs are the compressional and shear wave velocities,
espectively, which can be obtained from Navier’s equation [30]√(

4
)

1

p = B +

3
G

�
. (15)

s =
√

G

�
. (16)
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2.4. Thermodynamic properties

In order to obtain the thermodynamic properties of �-Ta4AlC3,
the quasi-harmonic Debye model [31] is introduced, in which the
phonon effects are considered and the non-equilibrium Gibbs func-
tion G*(V; P, T) takes the form of

G∗(V ; P, T) = E(V) + PV + AVib(�(V); T) (17)

Here E(V) is the total energy per unit cell for �-Ta4AlC3, �(V) is
the Debye temperature, and the vibrational Helmholtz free energy
AVib can be written by [32,33]

AVib(�; T) = nKT

[
9
8

�

T
+ 3 ln(1 − e−�/T ) − D

(
�

T

)]
. (18)

where D(�/T) represents the Debye integral, n is the number of
atoms per formula unit. For an isotropic solid, � is expressed as

� = h̄

K
[6�2V1/2n]

1/3
f (�)

√
BS

M
. (19)

where M is the molecular mass per formula unit, Bs the adiabatic
bulk modulus, which can be approximated by the static compress-
ibility

Bs ∼= B(V) = V

(
d2E(V)

dV2

)
. (20)

The Poisson ratio � is taken as 0.269. According to Refs. [32,34],
f(�) = 0.822269. For the Ta4AlC3, n = 8, M = 786.8069915 a.u. There-
fore, the non-equilibrium Gibbs function G*(V; P, T) as a function of
(V; P, T) can be minimized with respect to volume V as follows:(

∂G∗(V ; P, T)
∂V

)
P,T

= 0. (21)

By solving Eq. (21), the isothermal bulk modulus and other ther-
mal properties such as heat capacity at constant volume CV, the
heat capacity at constant pressure CP, and thermal expansion ˛ are
respectively taken as:

BT (P, T) = −V

(
∂P

∂V

)
= V

(
∂2G∗(V ; P, T)

∂V2

)
P,T

. (22)

CV = 3nk

[
4D

(
�

T

)
− 3�/T

e�/T − 1

]
, (23)

˛ = 	CV

BT V
, (24)

CP = CV (1 + ˛	T). (25)

where 	 represents the Grüneisen parameter and it is expressed as
	 = −(d ln �(V)/d ln V).

3. Results and discussion

3.1. Elasticity

In Table 2, we present the pressure dependence of the elastic
constants cij and the aggregate elastic modulus (B, G) of �-Ta4AlC3
at zero temperature and different pressures. It is found that the five
elastic constants increase monotonically with the applied pressure.
c11 and c33 increase quickly with the increasing pressure, and c13

has a moderate increase as well as c12 and c44. It can be seen from
Table 2 that c33 < c11. The implication of this is that the atomic bonds
along the {0 0 1} planes between nearest neighbors are weaker
than those along the {1 0 0} plane. Moreover, the bulk moduli B
are sensitive to pressure as compared with shear moduli G.
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Table 2
The calculated elastic constants cij (GPa), and aggregate elastic moduli (B, G, E/GPa),
the quotient of bulk to shear modulus (B/G), the Poisson’s ratio (�), the Debye tem-
perature (�D/K) of the �-Ta4AlC3 under pressure (GPa) at zero temperature.

P

0 5 10 20 30 40 50

c11 492.79 535.08 569.23 623.69 677.47 730.88 778.86
c12 160.72 172.94 181.85 211.49 241.00 261.88 288.03
c13 154.77 168.65 180.74 216.40 253.56 283.07 316.70
c33 417.95 459.51 492.68 556.94 616.30 645.26 697.80
c44 191.70 212.74 229.00 252.62 281.38 307.62 329.48
B 259.62 282.61 301.32 343.26 385.05 417.72 455.12
G 141.66 155.77 167.01 180.74 195.69 210.77 222.82
E 359.58 394.78 422.91 461.27 502.02 541.28 574.67

c
i
s
[
i
o
(
t

t
d
v
o
r

i
b
f
t
s
m
l

A

i
a

F
p

B/G 1.83 1.81 1.80 1.90 1.97 1.98 2.04
� 0.269 0.267 0.266 0.276 0.283 0.284 0.290
�D 336.30 351.48 362.85 375.99 389.76 402.90 412.97

As known, the elastic constants determine the response of the
rystal to external forces. They play an important part in determin-
ng the strength of the material. The high (low) quotient of bulk to
hear modulus (B/G) value is associated with ductility (brittleness)
30]. The critical value which separates ductile and brittle materials
s about 1.75. It is interesting to try to understand the microscopic
rigin of this empirical parameter. The calculated values of the B/G
>1.75) decrease at first then increase with pressures which means
hat pressure can reduce or improve ductility.

The Young’s modulus E and Poisson’s ratio � are important for
echnological and engineering applications. Young’s modulus is
efined as the ratio between stress and strain, and is used to pro-
ide a measure of the stiffness of the solid, i.e., the larger the value
f E, the stiffer is the material. The Young’s modulus and Poisson’s
atio increase with applied pressure (Table 2).

The elastic anisotropy of a crystal has an important implication
n engineering science since it is highly correlated with the possi-
ility to induce microcracks in the materials [35]. So, the anisotropy
actor was evaluated to provide insight on the elastic anisotropy of
he �-Ta4AlC3. The percentages of elastic anisotropy under pres-
ures for bulk modulus AB and shear modulus AG in polycrystalline
aterials are important, can be obtained by the equations as fol-

ows:

B = BV − BR , AG = GV − GR (26)

BV + BR GV + GR

A value of zero represents elastic isotropy and a value of 100%
s the largest possible anisotropy. The percentage of bulk and shear
nisotropies are listed in Fig. 2. It shows that �-Ta4AlC3 is largely

ig. 2. The percentage of bulk and shear anisotropies of �-Ta4AlC3 as functions of
ressure P.
Fig. 3. Pressure (a) and temperature (b) dependence of the isothermal bulk modulus
for �-Ta4AlC3.

isotropic in bulk and slightly anisotropic in shear at pressures or
not.

3.2. Other thermal properties

Fig. 3 presents the relations of the isothermal bulk modulus as
a function of temperature T up to 1500 K at P = 0, 30, and 60 GPa,
respectively. When T < 200 K, the isothermal bulk modulus is nearly
a constant, but it drops remarkably when T > 200 K, which is in
accordance with the relationships between the ratio V/V0 and pres-
sure P as shown in Fig. 1. It demonstrates that dramatic volume
variation leads to the rapid decreases in the isothermal bulk mod-
ulus. One can find that the effect of the temperature T on the
isothermal bulk modulus is less important than that of the pressure
P on it.

The calculated heat capacity at constant pressure CP and heat
capacity at constant volume CV with the temperature T at different
pressure P are shown in Fig. 4. The difference between CP and CV

is very small at low temperatures. However, at high temperatures,
the CV approaches to the constant, CP increases monotonously with
the increment of the temperatures. The values follow the Debye
model at low temperature (CV(T) ∼ T3) and the classical behavior
(CV(T) ∼ 3R for mono-atomic solids) is found at sufficient high tem-
peratures, obeying Dulong and Petit’s rule. From Fig. 4, one can also

see that the heat capacity increases with the temperatures at the
same pressure and decreases with the pressures at the same tem-
perature, the influences of the temperature on the heat capacity are
much more significant than that of the pressure on it.

Fig. 4. Temperature dependence of the heat capacity for �-Ta4AlC3.
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ig. 5. Variation of the Debye temperature � and Grüneisen parameter 	 with
ressure.

The Debye temperature is a fundamental parameter of a mate-
ial which is linked to many physical properties such as specific
eat, elastic constants, and melting point [36]. The Debye temper-
ture and the Grüneisen parameter at various temperatures and
ifferent pressures are presented in Fig. 5. Our calculated Debye
emperature at T = 0 K is 333.75 J mol−1 K−1, which is in agreement
ith the result (336.3 J mol−1 K−1) from Eq. (13). From Fig. 5, one

an find: (a) when the temperature keeps constant, the Debye tem-
erature increases almost linearly with applied pressures, while the
rüneisen parameter decreases smoothly with pressures. (b) When

he pressure keeps constant, the Debye temperature decreases
ith the increasing temperatures, while the Grüneisen parame-

er increases with the increasing temperatures, in virtue of the fact
hat the effect of increasing pressure on the material is the same
s decreasing temperature of the material. (c) The Debye temper-
ture at the temperature of 1500 K is lower than that at 300 K,
hich shows the fact that the vibration frequency of the particles

n �-Ta4AlC3 changes with the pressures and the temperatures.
The thermal expansion coefficient ˛ with temperature and pres-

ure for �-Ta4AlC3 is presented in Fig. 6. From Fig. 6(a), the thermal
xpansion coefficient ˛ increases with T3 at low temperatures,
radually approaches a linear increase at high temperatures, and

hen the increasing trend becomes gentler. The effects of pressure
n the thermal expansion coefficient ˛ are very small at low tem-
eratures; the effects are increasingly obvious as the temperature

ncreases. As pressure increases, the thermal expansion coefficient
decreases rapidly and the effects of temperature become less

ig. 6. Temperature (a) and pressure (b) dependence of the thermal expansion
oefficient ˛ for �-Ta4AlC3.
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and less pronounced, resulting in linear high-temperature behav-
ior. It is noteworthy that the high-temperature dependence of the
thermal expansion coefficient ˛ is not linear at low pressures (0
and 5 GPa); this is an indication of the inadequacy of the quasi-
harmonic approximation at high temperatures and low pressures.
It can be found that the thermal expansion coefficient ˛ con-
verges to a constant value at high temperatures and pressures.
However, from Fig. 6(b), as the pressure increases, the thermal
expansion coefficient ˛ decreases almost exponentially, and the
higher the temperature is, the faster the thermal expansion coeffi-
cient ˛ decreases. This shows that the effect of temperature is much
greater than that of pressure on the thermal expansion coefficient
˛.

4. Conclusions

The structural properties and elastic constants of �-Ta4AlC3
at high pressure are computed by the ultrasoft pseudopotentials
within the generalized gradient approximation in the frame of den-
sity functional theory. We carry out total energy calculations over
a wide range of volumes from 0.8V0 to 1.2V0, and obtain the equi-
librium ratio of the normalized volume V/V0 for a given volume.
The obtained pressure dependence of the normalized volume is in
excellent agreement with the experimental result.

The elastic constants, the aggregate elastic modulus (B, G, E),
Poisson’s ratio, and the anisotropy of �-Ta4AlC3 at high pressure in
the range of 0–50 GPa are also calculated. The elastic constants indi-
cate that the atomic bonds along the {0 0 1}planes between nearest
neighbors are weaker than those along the {1 0 0} plane. The calcu-
lated values of the B/G (>1.75) decrease at first then increase with
pressures which means that pressure can reduce or improve ductil-
ity. The calculated percentages of elastic anisotropy AB and AG show
that �-Ta4AlC3 is largely isotropic in bulk and slightly anisotropic
in shear.

The other thermodynamic properties are predicted using the
quasi-harmonic Debye model. It is found that the high tempera-
ture leads to a smaller adiabatic bulk modulus, a smaller Debye
temperature, a larger Grüneisen parameter, a larger heat capacity,
and a larger thermal expansion coefficient at constant pressure.
But the high pressure gives birth to a lager isothermal bulk mod-
ulus, a larger Debye temperature, a smaller Grüneisen parameter,
a smaller heat capacity, and a smaller thermal expansion coeffi-
cient at constant temperature. The thermal expansion coefficient
and heat capacity at constant volume are shown to converge to a
nearly constant value at high pressures and temperatures.
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